Airway management in the critically ill: the same, but different

A. Higgs¹, T. M. Cook² and B. A. McGrath³,*

¹Department of Anaesthesia and Intensive Care Medicine, Warrington & Halton Hospitals NHS Foundation Trust, Lovely Lane, Warrington, Cheshire WA1 1QG, UK,
²Department of Anaesthesia, Royal United Hospitals Bath Foundation Trust, Combe Park, Bath BA1 3NG, UK, and
³Department of Anaesthesia and Intensive Care Medicine, University Hospital South Manchester, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK

*Corresponding author. E-mail: brendan.mcgrath@manchester.ac.uk

Airway management has had a central role in intensive care medicine even from its origins. When Danish Anaesthetist Björn Ibsen applied his airway skills to victims of the 1952–3 Copenhagen poliomyelitis epidemic, the era of Critical Care Medicine was born.¹ The importance of advanced airway management in the care of the critically patient is one reason why modern Intensive Care Medicine is still closely allied to Anaesthesia in many countries.

In many ICUs there has recently been a move to more multi-speciality and even multidisciplinary staffing, both at a senior and trainee level, meaning advanced airway skills may not be reliably available. Staff are faced with increasingly obese patients with deranged baseline physiology and complex conditions who are disproportionately likely to experience airway difficulty, presenting challenges to airway safety in ICU.² ³

The 4th National Audit Project of the Royal College of Anaesthetists and Difficult Airway Society (NAP4)³ highlighted the difficulties, and sometimes failings, of airway management in ICU and showed it to be a place of “increased airway danger” compared with the operating theatre. However there are also opportunities: in the last decade airway management in anaesthesia has changed significantly. Adoption of appropriate technical and non-technical advances by the intensive care community from anaesthesia is likely to provide benefit. With updated airway management guidelines in Canada,¹ USA,¹ Germany⁶ and the UK¹ in recent years, now is a good time to reflect on both the challenges and opportunities facing those managing the airway in ICU. It is also time to consider whether difficult airway guidelines developed primarily for an anaesthetic setting are appropriate for airway management of critically ill patients, both inside and outside the ICU.

Why is ICU airway management different?

It is well recognized that in special circumstances different airway management approaches are needed, reflected by a range of published strategies and algorithms for adult, paediatric, obstetric, emergency and pre-hospital populations. Airway management in the critically ill patient may occur on the ICU itself or almost anywhere else in the hospital environment. Many of these locations are remote, none are designed with airway management primarily in mind and they all present logistical challenges. While some airway interventions will be planned, most are reactive and emergent, often with the intubating team called urgently to a rapidly deteriorating patient.

Patient factors often contribute to difficulty. In the emergency setting and with a patient who may be hypoxic, obtunded, combative or all three, airway assessment is difficult and often cannot be performed to the highest standards. Rapid sequence induction will be considered appropriate in most of these patients because of lack of starvation, intra-abdominal pathology or functional gastric stasis. The vast majority will have unstable physiology – even before anaesthesia is induced. This includes pre-existing hypoxia, ventilation-perfusion mismatch that impairs preoxygenation, absolute or relative hypovolaemia and an increased risk of myocardial impairment. This lack of cardiorespiratory reserve increases the risk of profound hypoxia, hypotension, arrhythmia, cardiac arrest and death.⁴ ³ Induction of anaesthesia is complex, requiring modification of normal drug choices and doses. Airway management needs to be prompt and successful to prevent physiological decline. Rapid desaturation from a hypoxic baseline creates time pressure and demands rapid action. Even when airway management is successful the initiation of positive pressure ventilation may also be poorly tolerated and lead to immediate or delayed deterioration.¹⁰

Of note the incidence of difficult airways in the critically ill is also likely increased. Patients with known airway difficulty are often admitted to the ICU for monitoring and management including intubation, extubation or observation. Astin’s UK survey¹¹ reported that one in 20 UK adult ICU admissions were...
for management of a primary airway problem and one in 16 patients had a predicted difficult airway. More pertinently, one in four of the ICUs surveyed had a patient admitted with a primary airway problem and 40% were managing at least one patient with a predicted difficult airway. Critical illness and its management can also render an anatomically ‘normal’ airway ‘difficult’ with fluid resuscitation, capillary leak syndromes, prone ventilation and long periods of intubation all contributing to airway oedema and distortion.

Importantly, but little discussed, the lack of skilled assistance and adequate equipment when managing the airways of critically ill patients may also impact on delivery of prompt, safe, skilled airway management – especially when difficulty occurs and non-standard plans are required.\(^3\)

What then are the impacts of these multifactorial issues on the outcomes of airway management in ICU? Firstly, failure to intubate is much more likely when inducing anaesthesia in the critically ill. Failure at the first intubation attempt can be expected in 10–12%, significantly higher than during anaesthetic practice.\(^4\)–\(^14\) Complications and cardiac arrests increase significantly as the number of intubation attempts increases.\(^1\)

Cardiac arrest during intubation on ICU is not infrequent. Over a 12 year period, with all intubations performed by an airway operator with a minimum of six months anaesthetic training, Mort reported 60 cardiac arrests occurring during 3035 out-of-theatre intubations (2%).\(^1\) Eighty-three percent of patients who arrested experienced severe hypoxaemia (SpO\(_2\) < 70%) during intubation, including all those patients requiring ≥3 intubation attempts. Patients developing severe hypoxia required an average of almost four attempts, while those without hypoxia were nearly all intubated first time. Oesophageal intubation increased risk of cardiac arrest more than 15-fold.

Other complications are common during ICU intubation attempts. In Nolan and Kelly’s 2011 review of critical care airway literature\(^16\) the reported rates of complications included: ≥3 intubation attempts 10%, severe hypoxaemia 7%, severe hypotension 17%, oesophageal intubation 5.3%, aspiration 2.6% and cardiac arrest 2.1%. In a study of seven French units staffed by residents with a minimum of one year’s experience, Jaber found that at least one severe complication occurred in 28% of intubations, including severe hypoxaemia in 26%, and cardiac arrest in 1.6%.\(^10\) The main risk factors were pre-procedural respiratory failure and shock, whilst the presence of two operators reduced risk. The authors highlight that the use of neuromuscular blocking agents for intubation in their study (62%) was in the middle of an extremely wide spectrum quoted in the international literature (ranging from 22–80%) and attributed the wide variety of practice to a regrettable lack of recommendations for airway management in critically ill patients.\(^10\)\(^13\)

There are of course clear differences in the post-intubation management of patients on ICU compared with anaesthetic practice. ICU patients may remain intubated for weeks and, in contrast to theatre, most ICU airway incidents take place after the airway has been secured. The UK National Reporting and Learning Centre identified that 82% of ICU airway incidents occurred after intubation, with 25% contributing to the patient’s death.\(^17\) All invasively ventilated ICU patients are subject to procedures, complex nursing care and repositioning which requires a high degree of vigilance to maintain the airway device, with success dependent on the performance of the multidisciplinary team, rather than one constantly present anaesthetist. Because of this, airway displacement and subsequent re-intubation is a constant danger in ICU, associated with high complication rates, including mortality.\(^3\)\(^18\) Tracheostomies are used to manage around 10–19% of level 3 ICU admissions in Europe and the US, and these patients occupy a disproportionately high number of ventilator bed days.\(^18\) The 2014 UK NCEPOD report into tracheostomy care reported complications in 23.6% of tracheostomized ICU patients, with nearly 30% of patients experiencing multiple complications.\(^19\) In keeping with previous reports, tube displacement, obstruction, pneumothorax and major haemorrhage were the commonest themes.\(^18\)

It is clear that the caseload, physiology, environment, staffing, airway devices and airway pathologies in the critically ill are significantly different to those addressed by existing guidelines.

What does NAP 4 tell us about ICU airways?

In contrast to the enormous literature on anaesthetic airway management, that focusing on airway management in ICU is rather modest. The NAP4 study is therefore important as it identified an increased rate of major airway events on ICU compared with anaesthesia (approximately 50–60-fold higher) and a notably worse outcome for patients who experienced these events (61% mortality on ICU vs 14% during anaesthesia).\(^2\) It is important to emphasize that the NAP4 inclusion criteria were only the major complications of airway management: death, brain injury, emergent surgical airway and new (or prolongation of) ICU admission. In total 36 events were reported from ICUs (approximately one major event for every six ICUs in one year) and 18 of the 38 deaths reported to NAP4 occurred in ICU. The NAP4 report was explicit in stating that avoidable airway deaths occurred. The project identified several issues of concern. Compared with the operating theatre setting, ICU was notable for failure to identify high-risk patients, higher rates of night-time events, management by unskilled trainees without a senior clinician, for failure to adhere to a structured guideline or plan of airway management and for a lack of (sometimes standard) equipment. The quality of airway management was judged to be poor during more events on ICU than in anaesthesia: including half of deaths.

What should a specific ICU guideline address?

Firstly, when initial airway assessment suggests difficulty, the gold standard technique in anaesthetic practice is awake fibreoptic intubation.\(^2\) This is rarely practical in patients who may already have acquired dependency on non-invasive pressure support, or who are confused, agitated, unstable or unconscious. Current anaesthetic airway guidance does not address either airway assessment or induction, in patients already dependent on advanced oxygenation techniques.

High-flow devices can deliver adequately heated and humidified oxygen at up to 70 L/min flow and may have a number of physiological benefits, including reduction of anatomical dead space, a continuous positive pressures effect and delivery of constant fraction of inspired oxygen.\(^2\) In the anaesthetic setting high-flow nasal CPAP has acquired the acronym Transnasal Humidified Rapid-Insufflation Ventilatory Exchange (THRIVE), but this is the same technology as has been widely used for hypoxic critically ill patients for several years. In the elective setting there has recently been great interest in its ability to increase the period of apnoea before hypoxia occurs. This has enabled difficult airway management to be carried out unhurriedly, or even obviated the need to secure the airway during surgery.\(^2\) However its effectiveness in preventing or delaying hypoxia during airway management in the critically ill is
The development of new guidelines

Current anaesthetic guidelines for management of airway difficulty are not universally applicable to the critical care setting. There have been appropriate calls for guidance specific to critical care and currently no such national guidelines exist. As part of the Royal College of Anaesthetists and The Difficult Airway Society’s (DAS) response to NAP4, a multidisciplinary working party with representation from the Faculty of Intensive Care Medicine, The Intensive Care Society, DAS, the National Tracheostomy Safety Project, the British Association of Critical Care Nursing and the College is currently drafting such guidance. Further details of the project can be found at www.das.uk.com. We anticipate the guidance will be available in 2017.

Importantly, the lack of guidance may be contributing to morbidity and mortality, highlighted by a recent Coroner’s report after an inquest into fatal failed intubation on ICU. The Coroner believed there is a risk of other deaths occurring in similar circumstances, mandating a response from stakeholders under regulation 28 (prevention of future deaths). The aim of new guidelines is to improve the safety of airway management in the critically ill, as it is clear that we cannot continue to manage the airways of elective day case patients and those at the margins of survival in exactly the same manner.

Acknowledgements

Additional members of the working party of the Critical Care Airway Guidelines group:

- Ganesh Suntharalingam, Northwick Park Hospital,
- Colette Laws-Chapman, Guys & St Thomas’ Hospital,
- Chris Goddard, Southport and Ormskirk NHS Trust,
- Jairaj Ragasami, Wexham Park Hospital,
- Becky Kenyon, North West Deanery.

Declaration of interest

A.H. has received honoraria for lecturing for Cook Medical. T.M.C. has received honoraria (>5 years ago) for lecturing for Intavent Ortho and the L.M.A. company. Lectured at a Storz educational meeting without payment. Hospital department has received airway equipment free or at cost for research or evaluation. T.M.C. is not aware of any financial conflicts. B.A.M. has received honoraria and travel expenses from Ambu for lecturing and evaluation of equipment.

References

9. Leibowitz AB. Persistent preoxygenation efforts before tracheal intubation in the intensive care unit are of no use: who would have guessed? Crit Care Med 2009; 37: 335–6